Serveur d'exploration Phytophthora

Attention, ce site est en cours de développement !
Attention, site généré par des moyens informatiques à partir de corpus bruts.
Les informations ne sont donc pas validées.

A proper PiCAT2 level is critical for sporulation, sporangium function, and pathogenicity of Phytophthora infestans.

Identifieur interne : 000313 ( Main/Exploration ); précédent : 000312; suivant : 000314

A proper PiCAT2 level is critical for sporulation, sporangium function, and pathogenicity of Phytophthora infestans.

Auteurs : Tu-Hong Wang [République populaire de Chine] ; Xiao-Wen Wang [République populaire de Chine] ; Xiao-Qiong Zhu [République populaire de Chine] ; Qun He [République populaire de Chine] ; Li-Yun Guo [République populaire de Chine]

Source :

RBID : pubmed:31997544

Abstract

Catalase is present in prokaryotic and eukaryotic organisms and is important for the protective effects of the antioxidant system against free radicals. Many studies have confirmed that catalase is required for the growth, development, and pathogenesis of bacteria, plants, animals, and fungi. However, there has been relatively little research on the catalases in oomycetes, which form an important group of fungus-like eukaryotes that produce zoosporangia. In this study, we detected two Phytophthora infestans genes encoding catalases, but only PiCAT2 exhibited catalase activity in the sporulation stage and was highly produced during asexual reproduction and in the late infection stage. Compared with the wild-type strain, the PiCAT2-silenced P. infestans transformants were more sensitive to abiotic stress, were less pathogenic, and had a lower colony expansion rate and lower PiMPK7, PiVPS1, and PiGPG1 expression levels. In contrast, the PiCAT2-overexpressed transformants were slightly less sensitive to abiotic stress. Interestingly, increasing and decreasing PiCAT2 expression from the normal level inhibited sporulation, germination, and infectivity, and down-regulated PiCdc14 expression, but up-regulated PiSDA1 expression. These results suggest that PiCAT2 is required for P. infestans mycelial growth, asexual reproduction, abiotic stress tolerance, and pathogenicity. However, a proper PiCAT2 level is critical for the formation and normal function of sporangia. Furthermore, PiCAT2 affects P. infestans sporangial formation and function, pathogenicity, and abiotic stress tolerance by regulating the expression of cell cycle-related genes (PiCdc14 and PiSDA1) and MAPK pathway genes. Our findings provide new insights into catalase functions in eukaryotic pathogens.

DOI: 10.1111/mpp.12907
PubMed: 31997544
PubMed Central: PMC7060140


Affiliations:


Links toward previous steps (curation, corpus...)


Le document en format XML

<record>
<TEI>
<teiHeader>
<fileDesc>
<titleStmt>
<title xml:lang="en">A proper PiCAT2 level is critical for sporulation, sporangium function, and pathogenicity of Phytophthora infestans.</title>
<author>
<name sortKey="Wang, Tu Hong" sort="Wang, Tu Hong" uniqKey="Wang T" first="Tu-Hong" last="Wang">Tu-Hong Wang</name>
<affiliation wicri:level="3">
<nlm:affiliation>College of Plant Protection and Key Lab of Pest Monitoring and Green Management, MOA, China Agricultural University, Beijing, China.</nlm:affiliation>
<country xml:lang="fr">République populaire de Chine</country>
<wicri:regionArea>College of Plant Protection and Key Lab of Pest Monitoring and Green Management, MOA, China Agricultural University, Beijing</wicri:regionArea>
<placeName>
<settlement type="city">Pékin</settlement>
</placeName>
</affiliation>
</author>
<author>
<name sortKey="Wang, Xiao Wen" sort="Wang, Xiao Wen" uniqKey="Wang X" first="Xiao-Wen" last="Wang">Xiao-Wen Wang</name>
<affiliation wicri:level="3">
<nlm:affiliation>College of Plant Protection and Key Lab of Pest Monitoring and Green Management, MOA, China Agricultural University, Beijing, China.</nlm:affiliation>
<country xml:lang="fr">République populaire de Chine</country>
<wicri:regionArea>College of Plant Protection and Key Lab of Pest Monitoring and Green Management, MOA, China Agricultural University, Beijing</wicri:regionArea>
<placeName>
<settlement type="city">Pékin</settlement>
</placeName>
</affiliation>
</author>
<author>
<name sortKey="Zhu, Xiao Qiong" sort="Zhu, Xiao Qiong" uniqKey="Zhu X" first="Xiao-Qiong" last="Zhu">Xiao-Qiong Zhu</name>
<affiliation wicri:level="3">
<nlm:affiliation>College of Plant Protection and Key Lab of Pest Monitoring and Green Management, MOA, China Agricultural University, Beijing, China.</nlm:affiliation>
<country xml:lang="fr">République populaire de Chine</country>
<wicri:regionArea>College of Plant Protection and Key Lab of Pest Monitoring and Green Management, MOA, China Agricultural University, Beijing</wicri:regionArea>
<placeName>
<settlement type="city">Pékin</settlement>
</placeName>
</affiliation>
</author>
<author>
<name sortKey="He, Qun" sort="He, Qun" uniqKey="He Q" first="Qun" last="He">Qun He</name>
<affiliation wicri:level="3">
<nlm:affiliation>State Key Laboratory of Agrobiotechnology and MOA Key Laboratory of Soil Microbiology, College of Biological Sciences, China Agricultural University, Beijing, China.</nlm:affiliation>
<country xml:lang="fr">République populaire de Chine</country>
<wicri:regionArea>State Key Laboratory of Agrobiotechnology and MOA Key Laboratory of Soil Microbiology, College of Biological Sciences, China Agricultural University, Beijing</wicri:regionArea>
<placeName>
<settlement type="city">Pékin</settlement>
</placeName>
</affiliation>
</author>
<author>
<name sortKey="Guo, Li Yun" sort="Guo, Li Yun" uniqKey="Guo L" first="Li-Yun" last="Guo">Li-Yun Guo</name>
<affiliation wicri:level="3">
<nlm:affiliation>College of Plant Protection and Key Lab of Pest Monitoring and Green Management, MOA, China Agricultural University, Beijing, China.</nlm:affiliation>
<country xml:lang="fr">République populaire de Chine</country>
<wicri:regionArea>College of Plant Protection and Key Lab of Pest Monitoring and Green Management, MOA, China Agricultural University, Beijing</wicri:regionArea>
<placeName>
<settlement type="city">Pékin</settlement>
</placeName>
</affiliation>
</author>
</titleStmt>
<publicationStmt>
<idno type="wicri:source">PubMed</idno>
<date when="2020">2020</date>
<idno type="RBID">pubmed:31997544</idno>
<idno type="pmid">31997544</idno>
<idno type="doi">10.1111/mpp.12907</idno>
<idno type="pmc">PMC7060140</idno>
<idno type="wicri:Area/Main/Corpus">000286</idno>
<idno type="wicri:explorRef" wicri:stream="Main" wicri:step="Corpus" wicri:corpus="PubMed">000286</idno>
<idno type="wicri:Area/Main/Curation">000286</idno>
<idno type="wicri:explorRef" wicri:stream="Main" wicri:step="Curation">000286</idno>
<idno type="wicri:Area/Main/Exploration">000286</idno>
</publicationStmt>
<sourceDesc>
<biblStruct>
<analytic>
<title xml:lang="en">A proper PiCAT2 level is critical for sporulation, sporangium function, and pathogenicity of Phytophthora infestans.</title>
<author>
<name sortKey="Wang, Tu Hong" sort="Wang, Tu Hong" uniqKey="Wang T" first="Tu-Hong" last="Wang">Tu-Hong Wang</name>
<affiliation wicri:level="3">
<nlm:affiliation>College of Plant Protection and Key Lab of Pest Monitoring and Green Management, MOA, China Agricultural University, Beijing, China.</nlm:affiliation>
<country xml:lang="fr">République populaire de Chine</country>
<wicri:regionArea>College of Plant Protection and Key Lab of Pest Monitoring and Green Management, MOA, China Agricultural University, Beijing</wicri:regionArea>
<placeName>
<settlement type="city">Pékin</settlement>
</placeName>
</affiliation>
</author>
<author>
<name sortKey="Wang, Xiao Wen" sort="Wang, Xiao Wen" uniqKey="Wang X" first="Xiao-Wen" last="Wang">Xiao-Wen Wang</name>
<affiliation wicri:level="3">
<nlm:affiliation>College of Plant Protection and Key Lab of Pest Monitoring and Green Management, MOA, China Agricultural University, Beijing, China.</nlm:affiliation>
<country xml:lang="fr">République populaire de Chine</country>
<wicri:regionArea>College of Plant Protection and Key Lab of Pest Monitoring and Green Management, MOA, China Agricultural University, Beijing</wicri:regionArea>
<placeName>
<settlement type="city">Pékin</settlement>
</placeName>
</affiliation>
</author>
<author>
<name sortKey="Zhu, Xiao Qiong" sort="Zhu, Xiao Qiong" uniqKey="Zhu X" first="Xiao-Qiong" last="Zhu">Xiao-Qiong Zhu</name>
<affiliation wicri:level="3">
<nlm:affiliation>College of Plant Protection and Key Lab of Pest Monitoring and Green Management, MOA, China Agricultural University, Beijing, China.</nlm:affiliation>
<country xml:lang="fr">République populaire de Chine</country>
<wicri:regionArea>College of Plant Protection and Key Lab of Pest Monitoring and Green Management, MOA, China Agricultural University, Beijing</wicri:regionArea>
<placeName>
<settlement type="city">Pékin</settlement>
</placeName>
</affiliation>
</author>
<author>
<name sortKey="He, Qun" sort="He, Qun" uniqKey="He Q" first="Qun" last="He">Qun He</name>
<affiliation wicri:level="3">
<nlm:affiliation>State Key Laboratory of Agrobiotechnology and MOA Key Laboratory of Soil Microbiology, College of Biological Sciences, China Agricultural University, Beijing, China.</nlm:affiliation>
<country xml:lang="fr">République populaire de Chine</country>
<wicri:regionArea>State Key Laboratory of Agrobiotechnology and MOA Key Laboratory of Soil Microbiology, College of Biological Sciences, China Agricultural University, Beijing</wicri:regionArea>
<placeName>
<settlement type="city">Pékin</settlement>
</placeName>
</affiliation>
</author>
<author>
<name sortKey="Guo, Li Yun" sort="Guo, Li Yun" uniqKey="Guo L" first="Li-Yun" last="Guo">Li-Yun Guo</name>
<affiliation wicri:level="3">
<nlm:affiliation>College of Plant Protection and Key Lab of Pest Monitoring and Green Management, MOA, China Agricultural University, Beijing, China.</nlm:affiliation>
<country xml:lang="fr">République populaire de Chine</country>
<wicri:regionArea>College of Plant Protection and Key Lab of Pest Monitoring and Green Management, MOA, China Agricultural University, Beijing</wicri:regionArea>
<placeName>
<settlement type="city">Pékin</settlement>
</placeName>
</affiliation>
</author>
</analytic>
<series>
<title level="j">Molecular plant pathology</title>
<idno type="eISSN">1364-3703</idno>
<imprint>
<date when="2020" type="published">2020</date>
</imprint>
</series>
</biblStruct>
</sourceDesc>
</fileDesc>
<profileDesc>
<textClass></textClass>
</profileDesc>
</teiHeader>
<front>
<div type="abstract" xml:lang="en">Catalase is present in prokaryotic and eukaryotic organisms and is important for the protective effects of the antioxidant system against free radicals. Many studies have confirmed that catalase is required for the growth, development, and pathogenesis of bacteria, plants, animals, and fungi. However, there has been relatively little research on the catalases in oomycetes, which form an important group of fungus-like eukaryotes that produce zoosporangia. In this study, we detected two Phytophthora infestans genes encoding catalases, but only PiCAT2 exhibited catalase activity in the sporulation stage and was highly produced during asexual reproduction and in the late infection stage. Compared with the wild-type strain, the PiCAT2-silenced P. infestans transformants were more sensitive to abiotic stress, were less pathogenic, and had a lower colony expansion rate and lower PiMPK7, PiVPS1, and PiGPG1 expression levels. In contrast, the PiCAT2-overexpressed transformants were slightly less sensitive to abiotic stress. Interestingly, increasing and decreasing PiCAT2 expression from the normal level inhibited sporulation, germination, and infectivity, and down-regulated PiCdc14 expression, but up-regulated PiSDA1 expression. These results suggest that PiCAT2 is required for P. infestans mycelial growth, asexual reproduction, abiotic stress tolerance, and pathogenicity. However, a proper PiCAT2 level is critical for the formation and normal function of sporangia. Furthermore, PiCAT2 affects P. infestans sporangial formation and function, pathogenicity, and abiotic stress tolerance by regulating the expression of cell cycle-related genes (PiCdc14 and PiSDA1) and MAPK pathway genes. Our findings provide new insights into catalase functions in eukaryotic pathogens.</div>
</front>
</TEI>
<pubmed>
<MedlineCitation Status="In-Process" Owner="NLM">
<PMID Version="1">31997544</PMID>
<DateRevised>
<Year>2020</Year>
<Month>04</Month>
<Day>21</Day>
</DateRevised>
<Article PubModel="Print-Electronic">
<Journal>
<ISSN IssnType="Electronic">1364-3703</ISSN>
<JournalIssue CitedMedium="Internet">
<Volume>21</Volume>
<Issue>4</Issue>
<PubDate>
<Year>2020</Year>
<Month>04</Month>
</PubDate>
</JournalIssue>
<Title>Molecular plant pathology</Title>
<ISOAbbreviation>Mol Plant Pathol</ISOAbbreviation>
</Journal>
<ArticleTitle>A proper PiCAT2 level is critical for sporulation, sporangium function, and pathogenicity of Phytophthora infestans.</ArticleTitle>
<Pagination>
<MedlinePgn>460-474</MedlinePgn>
</Pagination>
<ELocationID EIdType="doi" ValidYN="Y">10.1111/mpp.12907</ELocationID>
<Abstract>
<AbstractText>Catalase is present in prokaryotic and eukaryotic organisms and is important for the protective effects of the antioxidant system against free radicals. Many studies have confirmed that catalase is required for the growth, development, and pathogenesis of bacteria, plants, animals, and fungi. However, there has been relatively little research on the catalases in oomycetes, which form an important group of fungus-like eukaryotes that produce zoosporangia. In this study, we detected two Phytophthora infestans genes encoding catalases, but only PiCAT2 exhibited catalase activity in the sporulation stage and was highly produced during asexual reproduction and in the late infection stage. Compared with the wild-type strain, the PiCAT2-silenced P. infestans transformants were more sensitive to abiotic stress, were less pathogenic, and had a lower colony expansion rate and lower PiMPK7, PiVPS1, and PiGPG1 expression levels. In contrast, the PiCAT2-overexpressed transformants were slightly less sensitive to abiotic stress. Interestingly, increasing and decreasing PiCAT2 expression from the normal level inhibited sporulation, germination, and infectivity, and down-regulated PiCdc14 expression, but up-regulated PiSDA1 expression. These results suggest that PiCAT2 is required for P. infestans mycelial growth, asexual reproduction, abiotic stress tolerance, and pathogenicity. However, a proper PiCAT2 level is critical for the formation and normal function of sporangia. Furthermore, PiCAT2 affects P. infestans sporangial formation and function, pathogenicity, and abiotic stress tolerance by regulating the expression of cell cycle-related genes (PiCdc14 and PiSDA1) and MAPK pathway genes. Our findings provide new insights into catalase functions in eukaryotic pathogens.</AbstractText>
<CopyrightInformation>© 2020 The Authors. Molecular Plant Pathology published by British Society for Plant Pathology and John Wiley & Sons Ltd.</CopyrightInformation>
</Abstract>
<AuthorList CompleteYN="Y">
<Author ValidYN="Y">
<LastName>Wang</LastName>
<ForeName>Tu-Hong</ForeName>
<Initials>TH</Initials>
<AffiliationInfo>
<Affiliation>College of Plant Protection and Key Lab of Pest Monitoring and Green Management, MOA, China Agricultural University, Beijing, China.</Affiliation>
</AffiliationInfo>
</Author>
<Author ValidYN="Y">
<LastName>Wang</LastName>
<ForeName>Xiao-Wen</ForeName>
<Initials>XW</Initials>
<AffiliationInfo>
<Affiliation>College of Plant Protection and Key Lab of Pest Monitoring and Green Management, MOA, China Agricultural University, Beijing, China.</Affiliation>
</AffiliationInfo>
</Author>
<Author ValidYN="Y">
<LastName>Zhu</LastName>
<ForeName>Xiao-Qiong</ForeName>
<Initials>XQ</Initials>
<AffiliationInfo>
<Affiliation>College of Plant Protection and Key Lab of Pest Monitoring and Green Management, MOA, China Agricultural University, Beijing, China.</Affiliation>
</AffiliationInfo>
</Author>
<Author ValidYN="Y">
<LastName>He</LastName>
<ForeName>Qun</ForeName>
<Initials>Q</Initials>
<AffiliationInfo>
<Affiliation>State Key Laboratory of Agrobiotechnology and MOA Key Laboratory of Soil Microbiology, College of Biological Sciences, China Agricultural University, Beijing, China.</Affiliation>
</AffiliationInfo>
</Author>
<Author ValidYN="Y">
<LastName>Guo</LastName>
<ForeName>Li-Yun</ForeName>
<Initials>LY</Initials>
<Identifier Source="ORCID">0000-0002-1688-5726</Identifier>
<AffiliationInfo>
<Affiliation>College of Plant Protection and Key Lab of Pest Monitoring and Green Management, MOA, China Agricultural University, Beijing, China.</Affiliation>
</AffiliationInfo>
</Author>
</AuthorList>
<Language>eng</Language>
<PublicationTypeList>
<PublicationType UI="D016428">Journal Article</PublicationType>
<PublicationType UI="D013485">Research Support, Non-U.S. Gov't</PublicationType>
</PublicationTypeList>
<ArticleDate DateType="Electronic">
<Year>2020</Year>
<Month>01</Month>
<Day>29</Day>
</ArticleDate>
</Article>
<MedlineJournalInfo>
<Country>England</Country>
<MedlineTA>Mol Plant Pathol</MedlineTA>
<NlmUniqueID>100954969</NlmUniqueID>
<ISSNLinking>1364-3703</ISSNLinking>
</MedlineJournalInfo>
<CitationSubset>IM</CitationSubset>
<KeywordList Owner="NOTNLM">
<Keyword MajorTopicYN="Y">Phytophthora infestans </Keyword>
<Keyword MajorTopicYN="Y">abiotic stress</Keyword>
<Keyword MajorTopicYN="Y">appressorium</Keyword>
<Keyword MajorTopicYN="Y">catalase</Keyword>
<Keyword MajorTopicYN="Y">reactive oxygen species</Keyword>
<Keyword MajorTopicYN="Y">sporulation</Keyword>
</KeywordList>
</MedlineCitation>
<PubmedData>
<History>
<PubMedPubDate PubStatus="received">
<Year>2019</Year>
<Month>05</Month>
<Day>07</Day>
</PubMedPubDate>
<PubMedPubDate PubStatus="revised">
<Year>2019</Year>
<Month>12</Month>
<Day>12</Day>
</PubMedPubDate>
<PubMedPubDate PubStatus="accepted">
<Year>2019</Year>
<Month>12</Month>
<Day>13</Day>
</PubMedPubDate>
<PubMedPubDate PubStatus="pubmed">
<Year>2020</Year>
<Month>1</Month>
<Day>31</Day>
<Hour>6</Hour>
<Minute>0</Minute>
</PubMedPubDate>
<PubMedPubDate PubStatus="medline">
<Year>2020</Year>
<Month>1</Month>
<Day>31</Day>
<Hour>6</Hour>
<Minute>0</Minute>
</PubMedPubDate>
<PubMedPubDate PubStatus="entrez">
<Year>2020</Year>
<Month>1</Month>
<Day>31</Day>
<Hour>6</Hour>
<Minute>0</Minute>
</PubMedPubDate>
</History>
<PublicationStatus>ppublish</PublicationStatus>
<ArticleIdList>
<ArticleId IdType="pubmed">31997544</ArticleId>
<ArticleId IdType="doi">10.1111/mpp.12907</ArticleId>
<ArticleId IdType="pmc">PMC7060140</ArticleId>
</ArticleIdList>
<ReferenceList>
<Reference>
<Citation>Front Plant Sci. 2017 Feb 09;8:142</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">28232841</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Mol Plant Pathol. 2016 Apr;17(3):369-87</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">26095317</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Mol Plant Pathol. 2008 Jul;9(4):495-510</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">18705863</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Nat Rev Microbiol. 2005 Jan;3(1):47-58</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">15608699</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Plant J. 2002 Feb;29(3):257-68</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">11844104</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Fungal Genet Biol. 2006 Jun;43(6):430-8</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">16531084</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Fungal Genet Biol. 2007 Nov;44(11):1065-76</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">17560148</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>PLoS One. 2010 Apr 01;5(4):e9931</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">20368981</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>J Cell Sci. 2010 Sep 1;123(Pt 17):2867-76</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">20720150</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Annu Rev Plant Biol. 2004;55:373-99</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">15377225</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Environ Microbiol. 2013 Feb;15(2):409-18</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">22891860</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Science. 2000 Nov 3;290(5493):972-7</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">11062127</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Mol Microbiol. 2004 Jan;51(1):47-61</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">14651610</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Mol Plant Pathol. 2018 Feb;19(2):328-340</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">27935243</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Plant Cell. 1990 May;2(5):437-45</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">2152169</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>BMC Genomics. 2016 Nov 16;17(1):927</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">27852223</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Science. 2005 Jun 24;308(5730):1909-11</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">15879174</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Free Radic Biol Med. 2009 Aug 15;47(4):333-43</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">19427899</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>J Eukaryot Microbiol. 2013 Jan-Feb;60(1):79-88</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">23194320</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>J Biol Chem. 1998 Apr 24;273(17):10630-7</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">9553125</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Bioinformatics. 2007 Nov 1;23(21):2947-8</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">17846036</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Mol Cell. 2007 Apr 13;26(1):1-14</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">17434122</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Biochim Biophys Acta. 2007 Aug;1773(8):1311-40</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">17604854</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Mol Plant Microbe Interact. 2007 May;20(5):568-80</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">17506334</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Phytopathology. 2017 Feb;107(2):163-172</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">27749149</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Eukaryot Cell. 2003 Aug;2(4):798-808</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">12912899</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Fungal Biol. 2011 Sep;115(9):882-90</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">21872185</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Plant Physiol Biochem. 2016 Jun;103:10-23</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">26950921</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Free Radic Biol Med. 2016 Oct;99:139-152</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">27458122</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>J Mol Biol. 1995 Jun 23;249(5):933-54</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">7791219</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>J Cell Sci. 2000 Apr;113 ( Pt 7):1199-211</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">10704371</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Antioxid Redox Signal. 2008 Sep;10(9):1527-48</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">18498226</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Mol Genet Genomics. 2007 Jan;277(1):13-22</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">17077971</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Mol Plant Pathol. 2015 Jan;16(1):61-70</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">24889742</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Cells. 2019 Jan 24;8(2):</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">30682777</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Eukaryot Cell. 2003 Oct;2(5):971-7</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">14555479</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Curr Opin Microbiol. 2012 Dec;15(6):653-9</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">23123514</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Infect Immun. 1998 May;66(5):1953-61</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">9573075</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Eukaryot Cell. 2007 Oct;6(10):1701-14</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">17715363</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Trends Microbiol. 2005 Mar;13(3):111-8</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">15737729</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Curr Opin Plant Biol. 2005 Aug;8(4):397-403</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">15939662</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Fungal Genet Biol. 2018 Jul;116:73-82</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">29704555</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Environ Pollut. 2018 Apr;235:372-380</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">29306805</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Nature. 2009 Sep 17;461(7262):393-8</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">19741609</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>PLoS One. 2013;8(3):e58623</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">23516518</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Mol Plant Pathol. 2001 Sep 1;2(5):257-63</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">20573013</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>PLoS One. 2014 Apr 04;9(4):e92086</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">24704821</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Mol Microbiol. 2018 Nov;110(4):562-575</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">30194883</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>J Clin Microbiol. 1993 Nov;31(11):2967-73</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">8263182</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Mol Microbiol. 2003 Oct;50(2):487-94</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">14617173</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>J Biol Chem. 2004 Feb 20;279(8):6501-6</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">14645222</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>BMC Genomics. 2017 Feb 23;18(1):198</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">28228125</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Nucleic Acids Res. 2007 Jul;35(Web Server issue):W585-7</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">17517783</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Mol Biol Evol. 2016 Jul;33(7):1870-4</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">27004904</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Proc Natl Acad Sci U S A. 2002 Sep 3;99(18):11724-9</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">12172008</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>J Eukaryot Microbiol. 2008 Mar-Apr;55(2):103-9</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">18318863</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Antioxid Redox Signal. 2011 Jul 1;15(1):147-51</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">21375475</ArticleId>
</ArticleIdList>
</Reference>
</ReferenceList>
</PubmedData>
</pubmed>
<affiliations>
<list>
<country>
<li>République populaire de Chine</li>
</country>
<settlement>
<li>Pékin</li>
</settlement>
</list>
<tree>
<country name="République populaire de Chine">
<noRegion>
<name sortKey="Wang, Tu Hong" sort="Wang, Tu Hong" uniqKey="Wang T" first="Tu-Hong" last="Wang">Tu-Hong Wang</name>
</noRegion>
<name sortKey="Guo, Li Yun" sort="Guo, Li Yun" uniqKey="Guo L" first="Li-Yun" last="Guo">Li-Yun Guo</name>
<name sortKey="He, Qun" sort="He, Qun" uniqKey="He Q" first="Qun" last="He">Qun He</name>
<name sortKey="Wang, Xiao Wen" sort="Wang, Xiao Wen" uniqKey="Wang X" first="Xiao-Wen" last="Wang">Xiao-Wen Wang</name>
<name sortKey="Zhu, Xiao Qiong" sort="Zhu, Xiao Qiong" uniqKey="Zhu X" first="Xiao-Qiong" last="Zhu">Xiao-Qiong Zhu</name>
</country>
</tree>
</affiliations>
</record>

Pour manipuler ce document sous Unix (Dilib)

EXPLOR_STEP=$WICRI_ROOT/Bois/explor/PhytophthoraV1/Data/Main/Exploration
HfdSelect -h $EXPLOR_STEP/biblio.hfd -nk 000313 | SxmlIndent | more

Ou

HfdSelect -h $EXPLOR_AREA/Data/Main/Exploration/biblio.hfd -nk 000313 | SxmlIndent | more

Pour mettre un lien sur cette page dans le réseau Wicri

{{Explor lien
   |wiki=    Bois
   |area=    PhytophthoraV1
   |flux=    Main
   |étape=   Exploration
   |type=    RBID
   |clé=     pubmed:31997544
   |texte=   A proper PiCAT2 level is critical for sporulation, sporangium function, and pathogenicity of Phytophthora infestans.
}}

Pour générer des pages wiki

HfdIndexSelect -h $EXPLOR_AREA/Data/Main/Exploration/RBID.i   -Sk "pubmed:31997544" \
       | HfdSelect -Kh $EXPLOR_AREA/Data/Main/Exploration/biblio.hfd   \
       | NlmPubMed2Wicri -a PhytophthoraV1 

Wicri

This area was generated with Dilib version V0.6.38.
Data generation: Fri Nov 20 11:20:57 2020. Site generation: Wed Mar 6 16:48:20 2024